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ABSTRACT
SARS-CoV-2, the virus causing COVID-19, is a single-stranded RNA virus belonging to the order Nidovirales, 
family Coronaviridae, and subfamily Coronavirinae. SARS-CoV-2 entry to cellsis initiated by the binding of 
the viral spike protein (S) to its cellular receptor. The roles of S protein in receptor binding and membrane 
fusion makes it a prominent target for vaccine development. SARS-CoV-2 genome sequence analysis has 
shown that this virus belongs to the beta-coronavirus genus, which includes Bat SARS-like coronavirus, 
SARS-CoV and MERS-CoV. A vaccine should induce a balanced immune response to elicit protective 
immunity. In this review, we compare and contrast these three important CoV diseases and how they 
inform on vaccine development.
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Introduction

Coronaviruses (CoV) are enveloped, positive-sense, single- 
stranded RNA viruses of the family Coronaviridae with spikes 
around its spherical body (corona = crown).1–4CoV is the recog
nized cause of mild respiratory tract infections in humans.5–7 The 
first two HCoVs, HCoV-229E and HCoV-OC43 have been known 
since the 1960s.8 The viruses are subdivided into four genera on 
the basis of genotypic and serological characters which are Alpha-, 
Beta-, Gamma, and Delta-coronavirus,9,10 and among them CoVs 
in the first two genera infect humans.11–13Seven CoVs are known 
to infect humans, three of them seriously, viz., SARS (severe acute 
respiratory syndrome, China, 2002), MERS (Middle East respira
tory syndrome, Saudi Arabia, 2012), and SARS-CoV-2 (2019–20). 
Which are beta-coronaviruses (beta-CoVs).12 The viral fusion 
protein is critical in enveloped virus entry to cells in that it 
mediates the membrane fusion reaction.14–18 CoV entry into 
target cells is performed by the spike (S) envelope glycoprotein, 
which mediates both host cell receptor binding and membrane 
fusion.19,20The history of major epidemic diseases since 1900 is 
shown in Table 1. The three main CoV outbreaks and their origin 
is indicated in Table 2. Important steps that allow CoV entry are 
shown in Table 3. Taxonomy of the CoV family is presented in 
Figure 1. Host information and distribution of SARS CoVs in 
GenBank are presented in Table 4.

This manuscript aims to review SARS, MERS, and SARS- 
CoV-2 while considering their similarities and differences and 
possible methods to prevent their infection.

Severe acute respiratory syndrome (SARS)

The contagious and sometimes fatal severe acute respiratory 
syndrome (SARS) is a respiratory illness which first appeared 

in China in 2002, and it spread worldwide, mostly by unsus
pecting travelers.22–24 SARS-CoV belongs to the Beta- 
coronavirus family but has a “b” lineage. Other members of 
this family are Arteriviridae, Mesoniviridae, and Roniviridae.25 

It is similar to other coronaviruses in both virion structure and 
genome organization with a single-stranded, plus-sense 
RNA.26,27 CoVs are single-stranded RNA viruses which belong 
to the order Nidovirales, family Coronaviridae, and subfamily 
Coronavirinae,28–30 and have been classified into four major 
groups: α-CoVs, β-CoVs, γ-CoVs, and δ-CoVs with 17 
subtypes.31 It has been reported, SARS-CoV, like other coro
naviruses, is an RNA virus which replicates in the cytoplasm, 
and the virion envelope contains at least three structural pro
teins, S, E, and M, embedded in the membrane, and also like 
other coronaviruses, SARS-CoV encodes several group-specific 
proteins, termed 3a, 3b, 6, 7a, 7b, 8, and 9.32–34 Deletion of the 
small envelope (E) protein modestly reduces SARS-CoV 
growth in vitro and in vivo,35–37 which may result in an 
attenuated virus. SARS 8b, known as X5 is predicted to be 
a soluble protein with 84 amino acids and an estimated size 
of 9.6 kDa.38 It showed minor homology to the human coro
navirus E2glycoprotein precursor.39 SARS-CoV encodes an 
exceptionally high number of accessory proteins that bear little 
resemblance to accessory genes of other coronaviruses.40–43 

Like other coronaviruses, SARS-CoV is an inefficient inducer 
of IFN-β response in cell culture system44 and is sensitive to the 
antiviral state induced by IFNs.45,46 Two functional domains of 
S protein, S1 and S2 located in the N- and C-terminal regions, 
respectively, of the S protein are conserved among the 
coronaviruses.47 The S protein in coronaviruses is major anti
genic determinants that induce immune response in the 
hosts.48–50 The S protein of transmissible gastroenteritis virus 
contains four major antigenic sites (A–D), and site A on the S1 
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subunit is the main inducer of neutralizing Abs.51–53 Ab 
responses to SARS-CoV can be developed in SARS patients; 
but, its antigenic determinants remain to be elucidated.54 But, 
in other coronaviruses, deletion of E results in either complete 
absence of infectious virus or a severe reduction in titer.55,56 

DeDiego et al.57 reported that E protein is responsible in 
a significant proportion of the inflammasome activation and 
the associated inflammation elicited by SARS-CoV in the lung 
parenchyma, and the inflammation may lead to edema accu
mulation which cause acute respiratory distress syndrome 
(ARDS). E protein contains several active motifs despite its 
small size, between 76 and 109 amino acids depending on the 

CoV.58,59 The most important characteristics of SARS are 
shown in Table 5. Possible origins of SARS-CoV-2 and homo
logous analysis of SARS-CoV-2 (NC_045512) and six other 
Coronavirus strains isolated from different hosts in China are 
shown in Tables 6 and 7, respectively. Most relevant clinical 
similarities and differences between SARS-CoV and SARS- 
CoV-2 are presented in Table 8.

SARS should not be confused with avian flu which is 
another zoonosis from the same area.It initially began in the 
Guangdong province in south of China in 2002–2003 which 
eventually involved more than 8400 people worldwide, which 
is around 9.5% of the total affected.63–65 The greatest number 
of SARS cases were in mainland China, Hong Kong, Taiwan, 
Singapore, Canada, respectively.66–68 Quick infection is one of 

Table 1. History of epidemics since 1900.

Year Outbreak

1918 Great flu pandemic
1976 Legionnaires disease
1993 Hanta virus pulmonary syndrome
1994 Hendra virus infection
1997 H5N1 influenza infection
1999 Nipah virus encephalitis/pneumonitis
2002 Severe acute respiratory syndrome (SARS)
2012 Middle east respiratory syndrome (MERS)
2019 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

Table 2. Three main coronavirus outbreaks and their origin.

Coronavirus 
outbreak Origin

SARS Civets (although, the virus originated in bats, and civets 
consider as intermediary)

MERS Camels (The virus also came from bats)
SARS-CoV-2 Malayan pangolins (armadillo-like mammals) (the virus also 

came from bats)

Table 3. Important steps allow the virus entry.20.

(a) Bind to a target host cell, typically via interactions with cellular receptors.
(b) Fuse its envelope with a cellular membrane, either at the plasma membrane 

or through the endocytic pathway.
(c) Deliver its genetic material inside the cell.

Figure 1. Taxonomy of the coronaviridae family.

Table 4. Host information and distribution of SARSr-CoVs available in GenBank.21.

Provinces Bat species

Guangdong Rhinolophus sinicus
Guangxi Rhinolophus pearsonii, Rhinolophus sinicus
Guizhou Rhinolophus rex, Rhinolophus sinicus
Hebei Rhinolophus ferrumequinum
Henan Rhinolophus ferrumequinum
Hong Kong Rhinolophus sinicus
Hubei Rhinolophus ferrumequinum, Rhinolophus macrotis, Rhinolophus 

sinicus
Jilin Rhinolophus ferrumequinum
Shaanxi Rhinolophus pusillus
Shanxi Rhinolophus ferrumequinum
Taiwan Rhinolophus monoceros
Yunnan Aselliscus stoliczkanus, Rhinolophus affinis, Rhinolophus 

ferrumequinum, Rhinolophus sinicus
Zhejiang Rhinolophus monoceros, Rhinolophus pearsonii, Rhinolophus 

sinicus, Rhinolophus thomasi

Table 5. The most important characteristic of SARS.

1. The first international disease epidemic of the twenty-first century.
2. It is the first time this Coronavirus has been found in humans.
3. It was the first public health challenge for international communities.
4. The first disease that globalization visibly exacerbated its spread in a short 

time and contributed significantly to its end.
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the main character of SARS.69–71 The most important symp
toms of SARS were fever, chills, muscle aches, headache, and 
diarrhea, which may lead to fever with body temperature of 38° 
C or higher, dry cough and shortness of breath after around 
one week.72–74 On the basis of former reports the features of 
the clinical examination found in the patients at admission 
were self-reported fever (99%), documented elevated tempera
ture (85%), nonproductive cough (69%), myalgia (49%), and 
dyspnea (42%).75–78 SARS spread through droplets which enter 
the air with coughs, sneezes or talks; moreover, it may spread 
on contaminated objects and surfaces like doorknobs, elevator 
buttons, and telephones. SARS-CoV is transmitted mainly by 
person-to-person infection. During its outbreak, nearly 25% of 
people had severe respiratory failure and 10% died, and it was 
controlled by using public-health measures, namely, wearing 
surgical masks, washing hands, and isolating infected 
patients.79–82 Face to face contact of SARS can be divided 
into three groups, (1) caring for someone with SARS, (2) 
having contact with the bodily fluids of a person with SARS, 
and (3) kissing, hugging, touching or sharing eating or drink
ing utensils with an infected person.83–85 Almost 25% of cases 
developed severe pulmonary disease which may lead to death 
from respiratory failure.86 SARS which had flu-like signs can 

lead to death in severe conditions due to respiratory failure or 
complications consist of heart and liver failure, especially for 
those old people who had diabetes and hepatitis.87–89 Like the 
common cold, it is caused by a strain of corona CoV. 
Coronaviruses may lead to severe disease in animals, and it is 
supposed that the SARS virus might have come from animals 
to humans.90–92 SARS-CoV originated in wild bats and then 
spread to palm civets or similar mammals. Bats and Civets 
which are cat-like serve as foods and in folk medicines. Musk 
production from the scent glands of civets which is used in 
perfumes is another usage of civets. These mentioned animals 
could easily transmit the virus to humans.93

Table 9 shows the most important symptoms of SARS and 
MERS from the highest to the lowest in criticality, while criteria 
for disease control and prevention case definition of SARS are 
presented in Table 10. Case classification of SARS is shown in 
Table 11.

No medication has been proven to treat SARS effectively, 
but oxygen therapy and tracheal intubation and mechanical 
ventilation to support life until recovery begins is useful for 
patients in severe cases.95 The most useful ways to control 
SARS pandemic are public-health and infection-control 
measures.96–105 Peiris106 confirmed that its rapid mobilization 
and coordination of relevant expertise when it faced with 
a global emerging disease threat, which highlighted its needs 
for improved international regulations governing the reporting 
of and response to unusual infectious-disease syndromes. 
Circulating air with high-efficiency particulate air (HEPA) 
filter to decontaminate, wearing masks and isolating a patient 
in a single room and wearing a gown, gloves, eye shield, and 
mask or a portable air purifier which filters out small infectious 
particles (N95 mask) for staffs are necessary. Hui and Chan107 

found that horseshoe bats are implicated in the emergence of 

Table 6. Possible origins of SARS-CoV-2.60.

(1) The virus evolved to its current pathogenic state via natural selection in 
a non-human host and then jumped to humans. Bats are more likely 
reservoir of SARS-Cov-2 because it is similar to a bat coronavirus, and it 
may be an intermediate host was involved between bats and humans.

(2) A nonpathogenic version of the virus transferred from an animal host into 
humans and then evolved to its current pathogenic state within the human 
population. Armadillo-like mammals in Asia and Africa, have an RBD 
structure which is similar to that of SARS-CoV-2. A coronavirus from 
a pangolin may possibly have been transmitted to a human, directly or 
through an intermediary host like civets or ferrets.

Table 7. Homologous analysis of SARS-CoV-2 (NC_045512) and six other Coronavirus strains isolated from different hosts in China (%).61.

Isolate Host Complete genome ORF1ab N S

SARS coronavirus civet020 (AY572038) Civet 73.58 79.23 87.79 71.41
Bat SARS-like coronavirus As6526 (KY417142) Aselliscus stoliczkanus 74.58 79.23 87.55 68.17
Bat SARS-like coronavirus Rs4874 (KY417150) Rhinolophus sinicus 71.98 79.18 87.94 71.29
Alphacoronavirus Mink/China/1/2016 (MF113046) Mink 34.97 38.47 33.70 30.89
Bat coronavirus isolate RaTG13 (MN996532) Rhinolophus affinis 93.7 96.5 96.9 92.86
Pangolin coronavirus (MT084071) Manis javanica ? ? 95 90

Note: N, N protein. S, spike protein. ?, Sequence of Pangolin coronavirus (MT084071) is not completed in this part of genome.

Table 8. Most relevant clinical similarities and differences between SARS-CoV and SARS-CoV-2.62.

Characteristic SARS-CoV SARS-CoV-2

Target receptor ACE-2 ACE-2
N protein IFN-γ inhibitor Unknown
R0 0.4 1.4–2.5
Chest X-ray Ground glass opacities Bilateral, multilobar ground glass opacities
Chest CT-scan Lobar consolidation 

Nodular opacities
No nodular opacities

Prevention Hand hygiene, cough etiquette Possibly hand hygiene, cough etiquette
Transmission Droplets 

Contact with infected individuals
Droplets 

even asymptomatic ones
Case fatality rate (overall) 9.6% 2.3%

Abbreviations: SARS-CoV, Severe Acute Respiratory Syndrome Coronavirus; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; N protein, Nucleocapsid 
protein: IFN-γ, interferon-γ; R0, R through; X-ray, radiography; CT-scan, computerized tomography.
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novel coronavirus infection in humans. Ding et al.108 indicated 
that in addition to viral spread through a respiratory route, 
SARS-CoV in the intestinal tract, kidney, and sweat glands 

maybe excreted via feces, urine, and sweat, so leading to virus 
transmission. The three-dimensional structure result indicates 
that the nsp2 protein of GD strain is high homologous with 
3 CL(pro) of SARS-CoV urban strain, 3CL(pro) of transmis
sible gastroenteritis virus and 3CL(pro) of human coronavirus 
229E strain, which further suggests that nsp2 protein of GD 
strain possesses the activity of 3CL(pro).109,110 Rabenau et al.111 

showed that SARS-CoV can be inactivated easily with com
monly used disinfectants. Cao et al.112 showed that SARS 
transmission changes in its epidemiological characteristics 
and SARS outbreak distributions show palpable clusters on 
both spatial and temporal scales, also its transmission features 
are affected by spatial heterogeneity. Lessons learned from the 
SARS outbreak and concerns identified by WHO because of 
SARS are presented in Table 12. Duration of clinical phases of 
the mild and moderately severe variants of severe acute respira
tory syndrome is shown in Table 13.

The Middle East Respiratory Syndrome Coronavirus 
(MERS-CoV)

The middle East respiratory syndrome coronavirus (MERS- 
CoV) is a zoonotic beta coronavirus which can infect various 
kinds of animals such as humans, camels, and bats.118–123 It 
belongs to the Beta-coronavirus genus, of the coronavirus 
family.124,125 It was first discovered in September 2012 as the 
cause of death in a patients who had died of severe pneumonia 
in June 2012 in Jeddah, Saudi Arabia,126,127 and 1,348 cases of 
MERS-CoV infection confirmed globally, with at least 479 
related deaths until June 23, 2015.128 It has exported from the 
Middle East to other countries even countries in Asia, Europe, 
and North America.128–133 The most important characteristics 
of MERS-CoV infections are shown in Table 14.

Routine measures for travelers to help preventing the spread 
of viruses are hand washing, personal hygiene, avoid contacts 
with sick people, and animals, and covering the mouth with 
a tissue when coughing or sneezing and dispose properly the 
used tissue.137 MERS-CoV is most likely derived from an 
ancestral reservoir bats.143–146 Except for some cases in Korea 
in 2015, 82% of infections have occurred in Saudi Arabia, and 

Table 9. The most important symptoms of SARS and MERS from the highest to the 
lowest.

SARS MERS

Fever more than 30°C Fever
Dry cough Cough
Sore throat Shortness of breath
Problems in breathing, such as shortness of breath, 

inability to maintain oxygenation (hypoxia)
Sore throat

Headache Diarrhea
Body aches and muscles pain Head and body 

aches
Loss of appetite Vomiting
Malaise Chest pain/tightness
Night sweats and chills Running nose
Confusion Altered conscious/ 

confusion
Rash Sweating
Nausea, vomiting and diarrhea Abdominal pain
Weakness Weakness/fatigue
Fever Dizziness
Poor appetite Loss of appetite
Respiratory distress syndrome (ARD or ARDS) Shivering
Attacking the alveoli (air sacs) in the lungs
Kidney failure
Inflammation of the heart sac (pericarditis)
Sever systematic bleeding from disruption of clotting 

system (disseminated intravascular coagulation)
Reduced lymphocyte cell counts (lymphopenia)
Inflammation of the arteries (vasculitis)

Table 10. Criteria for disease control and prevention case definition of SARS.94.

Clinical Criteria Characteristics

Asymptomatic or mild 
respiratory illness

Moderate respiratory 
illness

Temperature of > 100.4°F(>38° C)

One or more clinical findings of respiratory illness 
(e.g. cough, shortness of breath, difficulty 
breathing, or hypoxia)

Severe respiratory illness Temperature of >100.4°F (>38°)
One or more clinical findings of respiratory illness 

(e.g. cough, shortness of breath, difficulty 
breathing, or hypoxia)

Radiographic evidence of pneumonia
Respiratory distress syndrome
Autopsy findings consistent with pneumonia or 

respiratory distress syndrome without an 
identifiable cause

Epidemiologic Criteria Travel (including transit in an airport) within 
10 days onset of symptoms to an area with 
current or previously documented or suspected 
community transmission of SARS

Close contact within 10 days of onset of symptoms 
with a person known or suspected to have SARS

Laboratory Criteria
Confirmed Detection of antibody to SARS-CoV in specimens 

obtained during acute illness or >21 days after 
illness onset

Detection of SARS-CoV RNA by RT-PCR confirmed 
by a second PCR assay, by using a second aliquot 
of the specimen and a different set of PCR 
primers

Isolation of SARS-CoV
Negative Absence of antibody to SARS-CoV in convalescent 

serum obtained >21 days after symptom onset
Undetermined Laboratory testing either not performed or 

incomplete

Table 11. Case classification of SARS.

Under 
investigation

A person who has been referred to the public health 
service for possible SARS-CoV infection

Suspected case A person with all of these following: 
(a) Sudden onset of high fever, > 38°C 
(b) One or more of the following respiratory symptoms: 

cough, sore throat, shortness of breath, and difficulty 
in breathing 

(c) Showing symptoms within 10 days of either traveling 
to one of the suspected areas of SARS or being in 
close contact with a person who has traveled to those 
areas

Probable case (a) A suspected case with chest X-ray findings of 
pneumonia or adult respiratory distress syndrome 

(b) A person with an unexplained respiratory illness 
resulting in death, with a postmortem examination 
demonstrating the pathology or respiratory distress 
syndrome without an identifiable cause

Confirmed case A clinically compatible illness which is confirmed by 
laboratories

Not a case A case that has been investigated and subsequently found 
not to meet the case definition
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the human mortality rate of MERS-CoV infection was nearly 
35%.147–149 It has been reported that patients with severe dis
eases have at least one underlying condition, including dia
betes, hypertension, chronic cardiac disease, and chronic renal 
disease.150,151 Human to human transmission has been facili
tated in healthcare settings152,153 with the contribution of hos
pital-based transmission of MERS estimated at about 80% 
using an epidemic model.154 MERS outbreak was found in 
the Republic of Korea since 2015,155 which showed the impor
tance risk of importing MERS and escalate global spread of 
MERS and damage to both economic and public health 
activities,156,157 which show the importance of travel restric
tions for infected countries.158,159 The key receptor for MERS- 
CoV infection which is dipeptidyl peptidase 4(DPP4), is widely 
distributed on human endothelial and epithelial cells.147 CoV 
entry is initiated by the binding of the spike protein (S) to cell 
receptors, specifically, DDP4 and angiotensin converting 
enzyme 2 (ACE2) for MERS-CoV and SARS-CoV, respec
tively. Its genome is a single-stranded RNA which encodes 10 
proteins including two replicase polyproteins (open reading 
frames [ORF], 1 ab and 1 a), three structural proteins (E, N, 
and M), a surface glycoprotein (S, spike) which comprises S1 
and S1, and five nonstructural proteins (ORF 3, 4a, 4b, and 
5).160–162 The subunit S1 is composed of four different core 
domain,163 and the domain S1B binds to the host-cell receptor 

dipeptidylpeptidase 4 (DPP4),162,164,165 while the domain S1A 
binds to sialoglycans which increased infection of human lung 
cells by MERS-CoV.166 It has been concluded that the MERS-S 
protein is known to represent a key target for the development 
of new therapeutics and includes of a receptor-binding subunit 
S1 and a membrane-fusion subunit S2.167 The roles of S protein 
in receptor binding and membrane fusion make it a perfect 
target for vaccine and antiviral development.168 It has been 
shown that vaccines based on the S protein can induce anti
bodies to block virus binding and fusion or neutralize virus 
infection.169–171 The subunit S2 includes the fusion peptide, 
two heptad repeats and a transmembrane domain, which med
iate fusion of the virus with the cell membrane.172,173 

Antibodies against MERS-CoV have been found among both 
dromedary camel populations and camel-exposed humans, 
which have been recognized as the source of multiple MERS 
case importations around the world.174,175 Previous studies 
have investigated viral vector-based vaccines,176–180 subunit 
vaccines,181–183 and DNA vaccines,184–188 but there is no clini
cally approved vaccine for MERS-CoV. Among these vaccines, 
viral vectors or DNA immunization successfully generated 
neutralizing antibodies and protected against infection.

The 5/end of the genome contains the rep1a and rep1b 
genes, which encode the viral replicase-transcriptase.At the 3/ 

end of genome, four structural protein, namely spike (S), 
envelope (E), membrane (M), and nucleocapsid (N) protein 
and five accessory proteins (ORF3, ORF4a, ORF4b, ORF5 and 
ORF8) make up 10 kb.189–191 Kasem et al.192 and Dighe et al.193 

showed that camels are a main reservoir for the maintenance of 
MERS-CoVs, and they are an important source of human 
infection with MERS. Al-Tawfiq et al.194 found that MERS- 
CoV was a rare cause of community acquired pneumonia and 
other viral causes such as influenza which are more common. 
Alfaraj et al.195 found that different factors contributed to 
increase mortality rate for MERS-CoV patients, and one of 
the most important factor is usage of corticosteroid and 
a continuous renal replacement therapy (CRRT). Corman et 
al.196 found that the kit is important tool for assisting in the 
rapid diagnosis, patient management, and epidemiology of 
suspected MERS-CoV cases. Yoon et al.197 found that 
6,8-difluoro-3-isobutyryl-2-((2,3,4-trifluorophenyl)amino) 
quinolin-4(1 H)-one (6 u) shows high inhibitory influence and 

Table 12. Lessons learned from the SARS outbreak and concerns identified by WHO because of SARS.113–116.

Lesson Means Concerns

The capacity of global alerts to improve awareness and 
vigilance

Wide support by responsible press 
and amplified by electronic 
communications

Inadequate surge capacity in hospitals and public health 
systems

The advantage of quick detection and reporting Immediate reporting of initial cases 
by South Africa and India

Healthcare providers themselves being the victims of the 
disease

The successful containment that can be achieved by readying 
health services with preparedness plans and campaigns to 
guard against imported cases

Climate of high alert that was 
established after reports of the 
disease became known

Shortage of expert staff to coordinate national and global 
responses to a rapidly evolving public health emergency

The value of immediate political commitment at the highest 
level

The experience in Vietnam, where the 
government took immediate 
measures to protect its people

In some cases, the need for hasty construction of new 
facilities; in other cases, hospitals being closed

The ability of even developing countries to triumph over a 
disease when reporting is prompt and open and when 
rapid case detection, immediate isolation and infection 
control, and vigorous contact tracing are put in place

The appeal by Vietnam, where WHO 
assistance was requested quickly 
and fully supported

The power of poorly understood infectious diseases to incite 
widespread public anxiety and fear, social unease, 
economic losses, and unwarranted discrimination

Table 13. Duration of clinical phases of the mild and moderately severe variants of 
severe acute respiratory syndrome112.

Phase Respiratory

Time Prodrome Early Late Recovery

From onset, days 0 2–7 8–12 14–18
Duration, days 2–7 1–10 5–10 5–7

Table 14. The most important characteristics of MERS-CoV infections.

(1) MERS-CoV infects more males than females134–136

(2) It is accompanied by a cluster of flu-like symptoms137–139

(3) Life threatening severe illnesses consist of acute respiratory distress syn
drome, pneumonia, myocarditis, and organ failure135,136,140–142

(4) Death occurs in 30% to 60% of the cases135

(5) Those who have preexisting medical conditions such as diabetes, cardio
vascular diseases, renal failure, obesity, and immunodeficiency are more 
vulnerable to this disease135,137
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low toxicity activities which is from 3-Acyl-2-phenylamino- 
1,4-dihydroquinolin-4(1 H)-one derivatives. Qiu et al.198 indi
cated that hMS-1 might be developed as an effective immu
notherapeutic agent to cure patients infected with MERS-CoV, 
especially in emergent cases. Early MERS-CoV diagnosis may 
require more sensitive risk assessment tools to reduce avoid
able delays, specifically those related to patients and health 
system.199–204 Alqahtani et al.205 noted that still many people 
have lack of accurate understanding about MERS-CoV trans
mission and prevention, and more studies need to examine the 
knowledge and practices among public and workers about 
MERS-CoV.206–209 Close contacts include airplane setting, 
household setting, household setting who also visited the 
patient in hospital, healthcare setting.210,211 Al-Tawfiq and 
Auwaerter212 suggested proper infection control procedures, 
prompt recognition, isolation and management of suspected 
cases are important parameters for MERS prevention. Kim213 

mentioned the importance of protecting healthcare providers 
from severe both physical and psychological stress. Al-Tawfiq 
et al.214 reported notable increase in costs of the healthcare 
system because of increase in utilization of surgical masks, 
respirators, soap, and alcohol-based hand sanitizers Douglas 
et al.215 indicated that the extent of MERS-CoV adaptation 
determines the minimal infectious dose needed to achieve 
severe respiratory disease. Nikiforuk et al.216 reported that 
viral infectious clone system may shorten time between emer
gence of a novel viral pathogen and construction of an infec
tious clone system. Ebihara et al.217 found that virus infectious 
clone systems allow for expression of a homogenous virus 
population within mammalian cell culture from a sequence of 
DNA or RNA. Letko et al.218 demonstrated that MERS-CoV 
spike can utilize multiple paths to rapidly adapt to novel species 
variation in DPP4. Zhang et al.219 found that MERS-4 neutra
lizes MERS-CoV by indirect rather than direct competition 
with DPP4. MERS-CoV nanoparticle vaccine produced high 
titer anti-S neutralizing antibody and protected mice from 
MERS-CoV infection in vivo. Mustafa et al.220 suggested appli
cation of antimicrobial peptides (AMPs) as alternative 

therapeutic agents against MERS-CoV infection. Baharoon 
and Memish221 emphasized on balance in application of both 
vaccination and antiviral therapeutics, also they highlighted the 
importance of avoid mechanism of escape mutant virus strains 
and improve activity against divergent virus strains. Widagdo 
et al.222 reported vaccination of dromedary camels is an appro
priate way to decrease human MERS cases. Comparison 
between SARS and MERS-CoV in respect to their virology, 
epidemiology and clinical outcomes are shown in Table 15. 
The differences between MERS-CoV and SARS-CoV in symp
toms, signs, laboratory tests, and chest film are indicated in 
Table 16.

Enhanced infection control measures which are effective in 
controlling nosocomial outbreaks and Middle East Respiratory 
Syndrome CoVs are shown in Tables 17 and 18, respectively.

SARS-CoV-2 coronavirus

The novel SARS-CoV-2 coronavirus which apparently first 
infected humans in Wuhan China, has caused the COVID-19 
pandemic.237–239 It is called SARS-CoV-2 because of its high 
similarity in terms of clinical symptoms and biological nature 
with the causative agent of severe acute respiratory syndrome 
(SARS) by the International Committee on Taxonomy of 
Viruses,240,241 which can affect patients of all ages.242,243 Its 
genome sequence analysis has shown that SARS-CoV-2 belons 
to beta-coronavirus genus, which includes bat SARS-like cor
onavirus SARS-CoV and MERS-CoV.244 Its outbreak in China 
since December 2019 has caused so many challenges, and it has 
rapidly spread to many countries.245–248 It belongs to a large 
family of viruses which are known as coronaviruses.249 It 
emerged after 2003 SARS in China and the second coronavirus, 
which was famous as MERS in 2012 in Saudi Arabia. On the 
basis of nucleic acid sequence similarity, the newly identified 
SARS-CoV-2 is a beta-coronavirus.250,251 It is mainly asso
ciated with respiratory disease and few extrapulmonary 
signs.252 Epidemiological investigations showed that different 
animals (Bbats, pangolins, snakes) could have been 

Table 15. Comparison between SARS and MERS-CoV in respect to their virology, epidemiology, and clinical outcomes.224.

MERS-CoV SARS

Virology Betacoronavirus lineage 2 C Betacoronavirus lineage 2B
Receptor hDPP4 ACE2
Genome size 29.9 kb 29.3kb
Source Not yet confirmed, camel is the likely host Civet Cat
Epidemiology Limited human to human transmission, the disease is mostly 

localized in the Middle East
Human to human transmission is well-recognized, affected many 

countries but spared the Middle East
Ro 2–3 (for Jeddah 3.5–6.7, for Riyadh 2–2.8) Variable, ranges from 2 to 6
Superspreading event Not known Reported
M:F 1.74:1 0.75:1
Median age (range) in years 48 (1–99) Less than a third had
Mean incubation period in 

days (range)
5 (2–15) Comorbidities

Comorbidities Three quarter of the patients had comorbidities Less than a third has Comorbidities
Clinical presentation Unpredictable and erratic clinical course ranging from 

asymptomatic illness to severe pneumonia
A typical biphasic clinical course

Hemoptysis More common Less common
Respiratory failure Presents relatively early Presents relatively late
Travel association Limited travel-associated exposure Recognized travel-associated exposure
Time from symptom onset to 

hospitalization
0–16 days 2–8 days

Median time from symptom 
onset to death

12 days 21 days
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intermediate hosts which facilitate the spill-over of SARS-CoV 
-2 as a distinct human Beta-coronavirus from bats to human 
population.253–257 Sun et al.258 reported that bats are consid
ered as the natural hosts of this virus, cold temperature and low 
humidity provides conducive environmental conditions for 
prolonged viral survival in suspected regions concentrated 
with bats. The RBD portion of the SARS-CoV-2 S protein has 
evolved to effectively target a molecular feature on the outside 
of human cells called ACE2, a receptor involved in regulating 
blood pressure.

The SARS-CoV-2 S protein was found so effective at bind
ing the human cells. The SARS-CoV-2 backbone differed sub
stantially from those of known coronaviruses and mostly 
resembled related viruses found in bats and pangolins. With 
considering tabular comparison of SARS versus SARS-CoV-2, 
clinical presentation of SARS and SARS-CoV-2 are fever, dry 
cough, and shortness of breath; incubation period for SARS 
and SARS-CoV-2 are 2–7 days, 2–14 days, respectively.259 Its 
cycle starts when S protein binds to the cellular receptor ACE2; 

after receptor binding the conformation change in the 
S protein facilitates viral envelope fusion with the cell mem
brane through the endosomal pathway, and then SARS-CoV-2 
releases RNA into the host cell. Genome RNA is translated into 
viral replicase polyproteins pp1a and 1ab, which are then 
cleaved into small products by viral proteinases. The polymer
ase produces a series of subgenomic mRNAs by discontinuous 
transcription and finally translated into relevant viral proteins. 
Both viral proteins and genome RNA are subsequently 
assembled into virions in the endoplasmic reticulum (ER) 
and Golgi, and then transported via vesicles and released out 
or the cell.260Kang et al.261 reported that the cause and con
sequence of pneumonia sill remain unknown. Previous coro
navirus outbreaks have started, with humans contracting the 
virus after direct exposure to civets (SARS), and camels 
(MERS).60 Tseng et al.262 found that SARS-CoV vaccines all 
induced antibody and protection against infection with SARS- 
CoV. Most CoVs share a similar viral structure, similar infec
tion pathway and a similar structure of the S protein,263 which 
has shown similar research strategies should be used for SARS- 
CoV-2.264,265 Matsuyama et al.266 discovered that SARS and 
MERS and SARS-CoV-2 infection is enhanced by TMPRSS2. 
Rasmussen et al.267 reported an incubation period of ~5 days 
(range-2–14 days), average age of hospitalized patients has 
been 49–56 years, with a third to half with an underlying 
illness, and men were more frequent among hospitalized 
cases (54–73%). Chan et al.268 reported person-to-person 
transmission of 2019 novel coronavirus in hospital and family 
settings, and the reports of infected travelers in other geogra
phical regions. Khan et al.269 reported that during control the 
SARS-CoV-2, the entrances of residential communities, dor
mitories, and public places were restricted and temperature 
monitoring for related symptoms was done before residents 
entering.269–273

Chen et al.249 showed that on the basis of molecular mod
eling, SARS-CoV-2 RBD has a stronger interaction with 
angiotensin converting enzyme 2 (ACE2), and a unique phe
nylalanine F486 in the flexible loop plays an important role 
due to its penetration into a deep hydrophobic pocket in 
ACE2, and ACE2 can potentially bind RBD of SARS-CoV-2, 
making them all possible natural hosts for the virus. It might 
be able to bind to the angiotensin-converting enzyme2 recep
tor in humans.274 Luan et al.275 observed that N82 in ACE2 
indicated a closer contact with SARS-CoV-2 S protein than 
M82 in human ACE2. RBD domain of SARS-CoV-2 interacts 
with human ACE2, which is why ACE2 is considered as the 
receptor for SARS-CoV-2.275,276Wall et al.276 showed the pre
sence of a four amino acid residue insertion at the boundary 
between the S1 and S2 subunits in SARS-CoV-2 S compared 
with SARS-CoV and SARS-CoV S. Wall et al.276 demon
strated that SARS-CoV s murine polyclonal antibodies 
potently inhibited SARS-CoV-2 S mediated entry into cells 
which showed cross-neutralizing antibodies targeting con
served S epitopes can be elicited upon vaccination. Measures 
to prevent transmission are highly successful at an early stage, 
and in the next steps on the SARS-CoV-2 infection should be 
focused on early isolation of patients and quarantine.277,278 

Possible origins of SARS-CoV-2 are shown in Table 25. In 

Table 16. The difference between MERS-CoV and SARS-CoV in symptoms, signs, 
laboratory tests, and chest film.225.

Symptoms MERS-CoV SARS-CoV

Headache + ++
Fever and chills +++ ++
Prominent fatigue + -
Myalgias ++ +++
Dry cough +++ ++
Shortness of breath +++ ++
Sore throat + +
Nausea/vomiting + +
Diarrhea ± ±
Abdominal pain ± -
Hemoptysis ± -
Signs
Tachycardia + +
Conjunctival suffusion + -
Diminished breath sounds + +
Acute renal failure (ARF) ± -
Laboratory tests
Normal WBC count -
Leukopenia + -
Relative lymphopenia +++ +++
Thrombocytopenia ++ +++
Elevated serum transaminases + ±
Elevated ldh + ++
Elevated cpk ++ -
Chest film
Normal/minimal basilar infiltrates (early) - +
Unilateral infiltrates (late) + -
Pleural effusion +++ ++
Cavitation + -
ARDS (severe cases) - -

Table 17. Enhanced infection control measures that were effective in controlling 
nosocomial outbreaks.226–235.

(1) Hand hygiene, and droplet and contact precautions for febrile patients 
with a fever before testing these patients for MERS-CoV.

(2) Putting surgical masks on all patients undergoing haemodialysis, and 
ensuring health-care workers wear N95 filtering facepiece respirators 
when managing any patient with a confirmed MERS-CoV infection who is 
undergoing an aerosol-generating procedure.

(3) Patients with suspected MERS-CoV infection admitted to dialysis or inten
sive care units should be placed in isolation rooms with a portable dialysis 
machine.

(4) Increasing environmental cleaning, and preventing non-essential staff and 
visitors from coming into contact with patients infected with MERS-CoV.
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SARS-CoV-2, M protein is responsible for the transmem
brane transport of nutrient, the bud release and the formation 
of envelope, S protein, attaching to hose receptor ACE2, 
including two subunits S1 and S2; S1 determines the virus 
host range and cellular tropism by RBD, and S2 mediates 
virus-cell membrane fusion by HR1 and HR2. N, E protein, 
and several accessory proteins, interfered with host immune 
response or unknown function. Li et al.61 reported that gen
ome and ORF1a homology show that the virus is not the same 
CoV as the CoV derived from five wild animals, namely 
Paguma larvata, Paradoxurus hermaphrodites, Civet, 
Aselliscus stoliczkanus, and Rhinolophus sinicus, whereas the 
virus has the highest homology with Bat Coronavirus isolate 
RaTG13. Populations influenced by SARS-CoV-2 divided 
into four levels is shown in Table 19.

Real-time reverse-transcriptase-polymerase chain reaction 
(rRT-PCR) may produce initial false negative results, and they 
have suggested that patients with typical computed tomography 
(CT) findings, but negative rRT-PCR results should be isolated, 
and rRT-PCR should be repeated to avoid misdiagnosis.280,281 

Other scientists also stated that final diagnosis relies on rRT-PCR 
positively for the presence of coronavirus.282–284 However, there 
are currently no effective specific antivirals or drugs combinations 
supported by high-level evidence.285 Wang et al.286 introduced 
spiral chest computed tomography (CT) as a sensitive examina
tion method, which can be applied to make early diagnosis and for 
evaluation of progression with a diagnostic sensitivity and accu
racy better than that of nucleic acid detection. Liu et al.287 indicated 
that on the resolutive phase of the disease, CT abnormalities 
showed complete resolution or demonstrated residual linear opa
cities. Prem et al.288 noticed that restrictions on activities in 
Wuhan, would help to delay the epidemic peak and prevent the 
secondary peak. Sun et al.289 highlighted the importance and 
availability of public datasets to encourage analytical efforts and 
provide robust evidence to guide interventions. Kobayashi et al.290 

found that the risk of death among young adults is higher than that 
of seasonal influenza, and those elderly with underlying comor
bidities need additional care. Grubaugh et al.291 found that many 
more mutations will appear in the viral genome which these 
mutations may help scientists to track the spread of SARS-CoV 
-2. Coronaviruses have capacity to jump species boundaries and 
adapt to new hosts.292 Zhao et al.293 reported that the majority of 
patients with suspected or confirmed SARS-CoV-2 showed fever 
and dry cough and presented bilateral multiple mottling and 
ground-glass opacity on chest computed tomography scans. 
Lippi et al.294 showed that low platelet count is associated with 
increased risk of severe disease and mortality in patients with 
SARS-CoV-2, and it can be considered as clinical indicator of 
worsening illness during hospitalization. Lv et al.295emphasized 

Table 18 Middle East respiratory syndrome coronavirus vaccines236.

Vaccine Target Use Advantages Problems

Anti-MERS-CoV monoclonal antibodies Surface (S) 
glycoprotein

Passive 
immunization; 
prophylaxis or 
treatment at early 
times p.i.

High titer preparations; can 
be produced in large 
amounts

Short half-life; needs to be readministered 
for continued efficacy

Human polyclonal anti-MERS-CoV 
antibodies

Virus structural 
proteins

Passive 
immunization; 
treatment at early 
times p.i.

Polyclonal antibody so 
antibody escape unlikely; 
human antibody

Short half-life; needs to be readministered 
for continued efficacy; few MERS 
survivors available as donors

Inactivated virion vaccines Virus structural 
proteins; anti-S 
neutralizing 
antibodies most 
important

Active immunization High titer antibody to 
S protein

Response many not be long term; on 
challenge may induce 
immunopathological disease; may be 
ineffective in aged populations

Live attenuated vaccines (e.g. viruses 
deleted in envelope (E) protein; 
viruses with reduced fidelity 
(mutated in nsp14)

Mostly virus structural 
proteins

Active immunization Generally safe; induce 
antibody and T-cell 
responses; long-term 
immunity

May not be safe is immunocompromised 
patients; may regain virulence by 
reversion or recombination with 
circulating CoV

Viral vector (attenuated) vaccines: 
poxvirus, AAV adenovirus, 
parainfluenza virus, rabies virus, 
measles virus, VSV

S protein Active immunization Safe: nonreplicating; induce 
antibody and T-cell 
responses

Long-term immunity, but not as long as 
live attenuated vaccines

Replicon particles (e.g. VEEV or VSV- 
based)

S protein or any viral 
protein

Active immunization Safe; nonreplicating; induce 
antibody and T-cell 
responses; useful for 
mucosal immunity

Production is complex

Subunit vaccines (e.g. RBD of S protein) Generally S protein Active immunization Safe; non-replicating; induce 
high antibody titers; may 
also induce T-cell 
responses

Duration of response not known

DNA vaccines Generally S protein Active immunization Safe; induce high antibody 
titers and T-cell responses

Immunogenicity variable; may induce anti- 
DNA immune response

Abbreviations: MERS-CoV, Middle East respiratory syndrome coronavirus; p.i., post infection; AAV, adeno-associated virus; VSV, vesicular stomatitis virus; VEEV, 
Venezuelan equine encephalitis virus; RBD, receptor binding domain.

Table 19. Populations influenced by SARS-CoV-2 divided into 4 levels.279.

(1) Patients with severe symptoms of SARS-CoV-2, front-line medical staff, 
researchers or administrative staff.

(2) Patients with mild symptoms of SARS-CoV-2, close contacts, suspected 
patients or patients with fever who come to hospital for treatment.

(3) People related to the first and second-level population, such as family 
members, colleagues or friends; rescuers, such as commanders, adminis
trative staff, or volunteers.

(4) People in affected areas, susceptible groups or general public.
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at the importance of successive sampling and testing SARS-Cov-2 
by RT-PCR. Xie et al.296 recommended combining the computed 
tomography scans and nucleic acid detection. Guo et al.297 indi
cated the strong influence of SARS-CoV-2 epidemic on the utiliza
tion or emergency dental services. It has been reported that 
remdesivir only and in combination with chloroquine or inter
feron beta significantly blocked the SARS-CoV-2 replication and 
patients were declared as clinically recovered.298–300 Some other 
anti-virals like Nafamostat, Nitazoxanide, Ribavirin, Penciclovir, 
Favipiravir, Ritonavir, AAK1, Baricitinib, and Arbidol showed 
moderate results when tested against infection in patients and in- 
vitro clinical isolates.301 Shen et al.302 consider isothermal nucleic 
acid amplification as a highly promising candidate method for 
detection of coronavirus infection, due to its fundamental advan
tage in quick procedure time at constant temperature without 
thermocycler operation. Seah and Agrawal303 found that the abil
ity of SARS-CoV-2 to infect ocular tissue and its pathogenic 
mechanisms. Ghinai et al.304 classified SARS-CoV-2 into four 
categories: high-risk contacts, medium-high-risk contact, med
ium-risk contacts, low-risk contacts and no-contacts. The most 
important Diagnostic Criteria for SARS-CoV-2 are shown in 
Table 20.

Human Coronaviruses and Vaccines

No licensed MERS coronavirus vaccine is currently available and 
the most challenges for progress to have vaccines are (a) available 
animal models which might not mimic human diseases,307 (b) 
an immune correlate or protection has not been identified and 
the protective immune response in natural infection is poorly 
understood,308 (c) there is a theoretical risk of immune enhance
ment during MERS coronavirus infection after vaccination pos
sibly leading to immunopathological pulmonary eosinophilic 
infiltration,309 (d) demonstration of efficacy in the field will 
probably not be possible, necessitating alternative regulatory 
pathways for licensure, (e) if MERS shifts from a pattern of 
sporadic outbreaks to pandemic spread, it is not known whether 
vaccines based on current MERS coronavirus isolates will offer 
protection against pandemic strains. Previous work with 
a double inactivated SARS-CoV had shown efficacy in young 
mice,310 but, subsequent analysis in aged animals or with 

heterologous challenge showed vaccine failure and significant 
immune pathology.311 Not tested in experimental systems, based 
on reported cases, age and immune-compromised status appears 
to be comorbidity factors for MERS-CoV infection and 
lethality.312,313 Spike (S) protein of MERS-CoV is immunogenic 
and can induce neutralizing antibodies, which is a potential 
major target for vaccine development.314 It is important to pre
pare for large scale-manufacture of the vaccine antigen.315 In 
viral vaccine design, it is essential to identify the most stable and 
neutralizing viral receptor binding domain (RBD) fragment, 
while eliminating unnecessary and non-neutralizing structures 
as a means of immunofocusing.316 Subcutaneous vaccination of 
a recombinant protein containing RBD of MERS-CoV S fused 
with Fc of human (RBD-Fc) induced strong systemic neutraliz
ing antibody responses in vaccinated mice.317 Spherical virus- 
like particles (sVLP) display the RBD of MERS-CoV are 
promising prophylactic candidate against MERS-CoV in 
a potential outbreak situation.318 Potent induction of T-cell 
responses by single-cycle vectors, indicate that these vectors are 
excellent alternatives to live-attenuated vesicular stomatitis virus 
(VSV).319 SARS M DNA vaccines which induce human neutra
lizing antibodies and human monoclonal antibodies against 
SARS CoV are not developed.319 SARS-CoV S DNA vaccine 
can generate antigen-specific humoral and cellular immune 
responses which may contribute to long-term protection.320 

Caution should be taken in using inactivated SARS-CoV as 
a vaccine since it may also cause harmful immune or inflamma
tory responses.321 Both S-containing ecosomes and the adeno
viral vector vaccine induced neutralizing antibody titers.322,323 

Polypeptides originating from N or S might be a potential target 
for the generation of a recombinant SARS vaccine.324,325 After 
study of a DNA SARS-vaccine, it has been found that 
a combination of the vaccine-induced T-helper type 1 (Th1) 
immune response while the whole killed virus vaccine included 
T helper type 2 (Th2).326 A similar approach to a CTL vaccine 
design may be possible for the SARS-CoV-2 which contain 
multiple class I epitopes with predicted HLA restrictions con
sistent with broad population coverage.327 Better understanding 
of the pathogenesis of the infection with the covid-19 which in 
selected cases may lead to a similar clinical picture of macro
phage activating syndrome with its associated cytokine storm 
may bring to an improved diagnostic measurements (Shoenfeld, 
2020). Immunoreactive spike-1 proteins from SARS-CoV-2 are 
expressed on the surface of irradiated target I-cells, so utilizing 
this innovative strategy, these viral antigen-displaying decoy cells 
will be developed as a vaccine to protect against SARS-CoV-2 
disease (Ji et al., 2020). Overview of vaccine production plat
forms and technologies for SARS-CoV-2 is shown in Table 21.

Vaccine efficacy is measured by the ability of the antigen to 
raise a protective immunologic response from V and T cells 
after exposure to the viral agent. Vaccines can be produced by 
inactivation of the virus by using an attenuated or weak form of 
the virus or by using recombinant forms of viral components. 
Inactivated virus vaccines are relatively safe because they can 
not revert back to the live form; moreover, they are stable and 
may not even require refrigeration. Inactivated vaccines may 
usually require several doses, and some are weakly effective at 
stimulating an immune response.

Table 20. The most important Diagnostic Criteria for SARS-CoV-2.305,306.

(1) Supportive epidemiological history.
(2) Clinical manifestation: Fever; normal or low levels of white blood cells or 

decreased lymphocyte counts at onset. Chest radiology at early stage is 
characteristic of multiple small patchy shadows and interstitial changes, 
more prominent in the extra pulmonary bands. Multiple ground-glass 
opacities and infiltrations may develop bilaterally with disease progression, 
with possible consolidation in severe cases.

(3) Diagnosis: SARS-CoV-2 nucleic acid positive in samples of sputum, pharynx 
swabs, and secretions of lower respiratory tract tested by real-time reverse- 
transcriptase-polymerase-chain reaction (rRT-PCR) assay.

(4) For patients with acute fever (>37.5oC within 72 hours) and normal chest 
imaging, if the absolute count of peripheral lymphocytes is less than 
0.8×109/L, or the count of DC4+ and CD8+ T cells decrease significantly, 
isolation and close observation should be conducted at home even it the 
first SARS-CoV-2 nucleic acid test is negative. Repeat of rRT-PCR should be 
considered after 24 h, and a chest CT scan should be performed when 
necessary.
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Human coronaviruses and antibody-dependent 
enhancement (ADE)

The immunopathological effects of antibody-dependent 
enhancement (ADE) have been observed in various viral infec
tions, characterized as antibody-mediated enhancement of viral 
entry and infection of a severe inflammatory response.332,333 

ADE of viral entry has been observed for many viruses. It was 
assumed that antibodies target one serotype of viruses but only 
subneutralize another, leading to ADE of the latter viruses. This 
phenomenon has been reported in vitro and in vivo for viruses 
representing numerous families and genera of public health and 
veterinary importance, which share some common features such 
as preferential replication in macrophages, ability to establish 
persistence, and antigenic diversity. For SARS-CoV, it was sug
gested that antibodies against spike proteins of SARS may cause 
ADE effect which raised reasonable concern regarding the use of 
SARS-CoV vaccine and shed light on some roles in SARS patho
genesis. There are conflicting data for the role of ADE in serious 
coronavirus infections. Antibodies against the S protein can 
enhance virus uptake by cells in vitro, although the clinical 
relevance of these findings is conflicting. It has been reported 
that the rush to make a vaccine for SARS-CoV-2 may lead the 
infections worse, because the amin risk is the chance of inducing 
ADE, a process known to complicate vaccine development 
which has happened before in Dengue and several other diseases. 
For previous human coronaviruses, SARS and MERS, antibodies 
against the viruses have been shown to cause ADE in animal 
models, including non-human primates, and like those viruses, it 
is important to be aware of the possibility of ADE caused by 
SARS-CoV-2 vaccines. ADE allows the infection of phagocytic 
antigen-presenting (APC), such as macrophages, due to the 
binding of virus-bound antibodies to FcγR on their 
surfance.333It has been shown that neutralizing antibodies 

targeting the receptor-binding domains (RBD) of the MERS- 
CoV and SARS-CoV spike proteins, respectively, can mediate 
the entry of the viruses into Fc receptor-expressing human cell 
in vitro.334 Furthermore, T cells, believed to play an important 
role in controlling SARS-CoV-2 infection, are depleted in severe 
SARS-CoV-2,335 and this may be accelerated APC infection due 
to ADE.336 Recently, scientists have reported that unlike in 
MERS and SARS, the S-protein RBD of SARS-CoV-2 can elicit 
a robust neutralizing antibody response without including ADE 
in animal immunization studies.337

The majority of SARS-CoV-2 vaccines in development aim 
to elicit neutralizing antibodies against the spike protein that 
prevent the virus from binding ACE2 on lung cells and enter
ing via endocytosis. Immunofocusing constitutes one of the 
main methods proposed to prevent ADE ad skew adaptive 
immunity toward protective responses, and other immunofo
cusing strategies consist of making undesired antibody epi
topes with glycosyl groups; truncating the spike protein, and 
locking the antigen into conformations which display epitopes 
for neutralizing antibodies.

On the basis of small cohorts of SARS-CoV-2 patients, two 
studies have shown that an increased lgG response and a higher 
titer of total antibodies were associated with more severe 
disease,338,339 which suggestive of possible ADE in SARS-CoV-2 
infection,340 but there are still some doubts over the relevance of 
ADE in SARS-CoV-2. In some clinical studies, it has been revealed 
that SARS-CoV-specific antibodies are not harmful in patients 
with SARS, although it has been noted that non-neutralizing 
coronavirus antibodies may cause ADE in feline infectious perito
nitis. Such efforts have promoted investigators to remove potential 
ADE-promoting S protein epitopes located outside the RBD and 
focus on the RBD as a lead vaccine candidate.341,342There is no 
evidence that ADE facilitates the spread of SARS-CoV in infected 

Table 21. Overview of vaccine production platforms and technologies for SARS-CoV-2328.

Platform Target

Existing, Licensed 
Human Vaccines 
Using the Same 

Platform Advantages Disadvantages

RNA vaccines S protein No No infectious virus needs to be handled, vaccines 
are typically immunogenic, rapid production 
possible.

Safety issues with reactogenicity have been 
reported.

DNA vaccines S protein No No infectious virus needs to be handled, easy scale 
up, low production costs, high heat stability, 
tested in humans for SARS-CoV-1, rapid 
production

Vaccine needs specific delivery devices to reach 
good immunogenicity.

Recombinant protein 
vaccines

S protein Yes for baculovirus 
(influenza, HPV) 
and yeast 
expression (HBV, 
HPV)

No infectious virus needs to be handled, adjuvants 
can be used to increase immunogenicity

Global production capacity might be limited. 
Antigen and/or epitope integrity needs to be 
confirmed. Yields need to be high enough.

Viral vector-based 
vaccines

S protein Yes for VSV (Ervebo), 
but not for other 
viral vectored 
vaccines

No infectious virus needs to be handled, excellent 
preclinical and clinical data for many emerging 
viruses, including MERS-CoV

Vector immunity might negatively affect vaccine 
effectiveness (depending on the vector chosen)

Live attenuated vaccines Whole 
virion

Yes Straightforward process used for several licensed 
human vaccines, existing infrastructure can be 
used

Creating infectious clones for attenuated 
coronavirus vaccine seeds takes time because of 
large genome size. Safety testing will need to be 
extensive

Inactivated vaccines Whole 
virion

Yes Straightforward process used for several licensed 
human vaccines, existing infrastructure can be 
used, has been rested in humans for SARS-CoV 
-1, adjuvants can be used to increase 
immunogenicity

Large amounts of infectious virus need to be 
handled (Could be mitigated by using an 
attenuated seed virus). Antigen and/or epitope 
integrity needs to be confirmed
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hosts; in fact, infection of macrophages through ADE does not 
result in productive viral replication and shedding.343 Instead, 
internalization of virus-antibody immune complexes can promote 
inflammation and tissue injury by activating myeloid cells via 
FcRs.344 Virus introduced into the endosome through this path
way will likely engage the RNA-sensing Toll-like receptors (TLRs) 
TLR3, TLR7, and TLR8. Uptake of SARS-CoV through ADE in 
macrophages led to elevated production of TNF and IL-6. In mice 
infected with SARS-CoV, ADE was associated with decreased 
levels of the anti-inflammatory cytokines IL-10 and TGFβ and 
increased levels of the proinflammatory chemokines CCL2 and 
CCL3.345Recent studies of antibody responses in patients with 
SARS-CoV-2 have associated higher titers of anti-N IgM and 
IgG at all time points of following the onset of symptoms with 
a worse disease outcome.346 Furthermore, higher titers of anti-S 
and anti-N IgM and IgM correlated with worse clinical readouts 
and older age,347 suggesting potentially detrimental impacts of 
antibodies in some patients. But, 70% of patients who recovered 
from mild SARS-CoV-2 had measurable neutralizing antibodies 
that persisted upon revisit to the hospital.348

ADE should be given full consideration in the safety evalua
tion of emerging vaccines for SARS-CoV-2 and monoclonal 
antibodies could be used to tackle this virus.349From studies 
about using a MERS-CoV vaccine, it has also been proposed 
that neutralizing antibodies might instead induce ADE. 
Vaccines are a routine medical intervention performed on 
healthy individuals, so it is important to consider ADE seriously 
during vaccine development to ensure that vaccines protect 
individuals and do not exacerbate disease following subsequent 
infections. Translational considerations for SARS-CoV-2 vac
cine development, and vaccine platforms for human corona
viruses are presented in Tables 22 and 23, respectively.

Conclusion

Severe acute respiratory syndrome (SARS) is caused by 
a coronavirus SARS-CoV which was started in pigs or ducks in 
south of China and mutated to affect humans. It was originated in 
Guangdong province. CoVs are single-stranded RNA viruses 
which belong to the order Nidovirales, family Coronaviridae, 
and subfamily Coronavirinae. SARS is caused by a coronavirus 
(SARS-CoV) which exists in bats and palm civets in Southern 
China. Its family is Coronaviridae, and its genus is Coronavirus. It 
is enveloped, helical nucleocapsid, spherical to pleomorphic, heli
cal nucleocapsid, spherical to pleomorphic, kidney-shaped or rod- 
shaped particles, 100–130 nm in diameter. Its nucleic acid is linear, 
positive-sense, single-stranded RNA, ~29.8 kb in length. Virions 
sensitive to treatment with lipid solvents, nonionic detergents, 
formaldehyde, and oxidizing agents. The civet cat (palm civet) in 
Southeast Asia is likely source of introduction of the agent to 
humans. The SARS CoV RNA sequence found in palm civets is 
99% identical to that found in palm civets is 99% identical to that 
found in humans. Similar RNA sequences have been found in bats, 
snakes and monkeys. No medication has been proven to treat 
SARS effectively, but oxygen therapy and tracheal intubation and 
mechanical ventilation to support life until recovery begins is 
useful for patients in severe case. The most useful ways to control 
SARS pandemic is public-health and infection-control measures. 
The most important primary measures are isolation, ribavirin, and 
corticosteroid therapy, mechanical ventilation, convalescent 
plasma, and others. It can be spread from close person-to-person 
contact via respiratory droplets which come in contact with skin or 
mucous membranes such as eyes, mouth or nose.

MERS-CoV is a zoonotic virus which can lead to secondary 
human infections. Dromedary camels have been recognized as 
the intermediate host, with closely related virus sequences in 
bats. MERS carries a 35% mortality rate. There is no clear and 
specific treatment for MERS, and person to person spread causes 
hospital and household outbreaks of MERS-CoV. It is the sixth 
coronavirus that influences human. Like other coronaviruses, it 
is an enveloped single-stranded RNA virus which replicates in 
the host-cell cytoplasm, with approximate size of 30 kb. It has 
structural proteins, called the E, M, and N proteins, and mem
brane protein called the spike (S) protein, which has important 
role in the virus attachment and entry into the host cells. It has 
been concluded that the MERS-S protein is known to represent 
a key target for the development of new therapeutics and 
includes of a receptor-binding subunit S1 and a membrane- 
fusion subunit S2. The subunit S1 is composed of four different 
core domain, and the domain S1B binds to the host-cell receptor 
dipeptidylpeptidase 4 (DPP4), while the domain S1A binds to 
sialoglycans which increased infection of human lung cells by 
MERS-CoV. The roles of S protein in receptor binding and 
membrane fusion make it a perfect target for vaccine and anti
viral development. It has been showed that vaccines based on the 
S protein can induce antibodies to block virus binding and 
fusion or neutralize virus infection.

The novel SARS-CoV-2, which apparently first infected peo
ple in the city of Wuhan, spread in all over the world. Its genome 
sequence analysis has shown that SARS-CoV-2 belongs to beta- 
coronavirus genus, which includes Bat SARS-like coronavirus, 
SARS-CoV and MERS-CoV. On the basis of nucleic acid 

Table 22. Translational considerations for SARS-CoV-2 vaccine development.350.

Stage
Translational 

category Activity

T0 Basic Research Characterize antibody-dependent enhancement 
(ADE) mechanisms

Identify SARS-CoV-2 ADE-associated epitopes
Bioinformatics of SARS-CoV-2 mutations
Generating recombinant vaccine proteins
Animal models for SARS-CoV-2 vaccines

T1 Preclinical 
Research

Phase 1 clinical trials

Assay development for human anti-SARS-CoV-2 
IgG

Assay development for neutralizing versus ADE- 
inducing human IgG

Assess effects of vaccine on ADE induction in 
animal models

Modify vaccines to minimize ADE risk
T2 Clinical Research Phase 2/3 clinical trials

Consider limiting initial vaccine studies to subjects 
≥20 years old

Multiplex measurement of anti-COVID IgG
Outcomes research

T3 Clinical 
Implementation

Phase 4 clinical trials

Long-term follow-up of post-vaccinated and 
infected subjects for ADE

Reexamine age indications for SARS-CoV-2 
vaccination

T4 Public Health Population-level studies of vaccine efficacy
Assessment of ADE-associated antibody 

prevalence
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sequence similarity, the newly identified SARS-CoV-2 is a beta- 
coronavirus. The RBD portion of the SARS-CoV-2 pike proteins 
has evolved to effectively target a molecular feature on the out
side of human cells called ACE2, a receptor involved in regulat
ing blood pressure. The SARS-CoV-2 spike protein was found so 
effective at binding the human cells. In SARS-CoV-2, M protein 
is responsible for the transmembrane transport of nutrient, the 
bud release and the formation of envelope, S protein, attaching 
to hose receptor ACE2, including two subunits S1 and S2. It has 
been reported that remdesivir only and in combination with 
chloroquine or interferon beta significantly blocked the SARS- 
CoV-2 replication and patients were declared as clinically recov
ered. Some other anti-virals like Nafamostat, Nitazoxanide, 
Ribavirin, Penciclovir, Favipiravir, Ritonavir, AAK1, 
Baricitinib, and Arbidol showed moderate results when tested 
against infection in patients and in-vitro clinical isolates. 
Isothermal nucleic acid amplification as a highly promising 
candidate method for detection of coronavirus infection, due 
to its fundamental advantage in quick procedure time at con
stant temperature without thermocycler operation.

Antibody dependent enhancement of viral infection is 
a process by which the virus leverages the antibodies to aid 
its infection. ADE allows the infection of phagocytic antigen- 
presenting cells (APC), such as macrophages, due to the bind
ing of virus-bound antibodies to FcγR on their surface. 
Identification of viral epitopes associated with ADE neutraliza
tion is effective for development of vaccines with minimum or 
no risk for ADE. Also, clear understanding of the cellular 
events after virus entry through ADE has become crucial for 
developing efficient intervention, and it is necessary to better 
understanding the mechanisms of ADE.

The vaccine effort should be guided by three impera
tives: speed, manufacture and deployment at scale, and 
global access. Once the vaccine found to be effective, it 
will be distributed to millions or billions of people. The 
amino acid sequences of the virus like in other viruses, 
might have a cross-reaction with the human body 
sequences. Researchers should work to develop effective 
and safe subunit vaccines against human coronaviruses, 
especially SARS-CoV-2 and any other emerging corona
viruses that might cause future pandemics.
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